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GLOBAL HYPERSURFACES OF SECTION FOR GEODESIC FLOWS ON CONVEX
HYPERSURFACES

SUNGHAE CHO AND DONGHO LEE

ABSTRACT. We construct a global hypersurface of section for the geodesic flow of a convex hypersurface
in Buclidean space admits an isometric involution. This generalizes the Birkhoff annulus to higher
dimensions.

1. INTRODUCTION

Global surfaces of section, an idea introduced by Poincaré in his work on celestial mechanics [Poi87]
and also explored by Birkhoff [Bir66], feature prominently in the literature on the 3-dimensional dynam-
ics. They allow us to reduce the dynamics of vector fields on 3-manifolds to the dynamics of surface
diffeomorphisms. Ghys [GhyOQ] called the existence of a global surface of section as a paradise for dy-

i since it elimi ies and allows to investigate the pure nature of dynamical
systems.
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Main Result

Existence of global hypersurfaces of section of
© symmetric mechanical Hamiltonian defined on T*R"™.

@ geodesic flow on symmetric convex hypersurface in R**1.

L R



Contents

@ Basic notions
Hamiltonian and Reeb dynamics, global hypersurfaces of section and
open book decompositions.

@ Case 1. Mechanical Hamiltonians
Including harmonic oscillators, ellipsoids and Henon-Heiles system

© Case 2. Geodesic Flow on Convex Hypersurfaces
Including hypersurfaces of revolution and Kepler problem
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Basic Notions



Hamiltonian Dynamics

(W, w): symplectic manifold, i.e. w is nondegnerate closed 2-form.
H : W — R: Hamiltonian (which is just a smooth map)

Hamiltonian vector field is given by
ixyw = —dH.

The dynamics induced by X is called Hamiltonian dynamics.
Note. X is tangent to the regular level set H*(c).
In other words, H is constant along the orbit of X

(Conservation of the mechanical energy)
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Example : Mechanical Hamiltonian

Mechanical Hamiltonian (= total mechanical energy) is given by
H: (T*R",dp Ndq) — R
(4,p) = %Ipl2 +V(q)
The Hamiltonian vector field is given by
Xg=p-03—VV -0,
The Hamiltonian flow equation is given by
Gg=—-VV.

This is Newton's second law of motion.
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Reeb Dynamics

(Y2 +1 ker o): Contact manifold (« is 1-form s.t. o A (da)™ # 0)
Reeb vector field R is the unique vector field s.t. a(R) =1, irda = 0.
The dynamics induced by R is called Reeb dynamics.
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Relationship between Hamiltonian and Reeb dynamics

H : W — R: Hamiltonian with regular value c.

Liouville vector field X : £xw = w and positively transverse to H'(c).
If there exists a Liouville vector field,

@ (Y = H !(c),ker(ixw)) is a contact manifold.

@ The Reeb vector field is parallel to Xg.

© Flow of X7 and R are same up to reparametrization.

@ Bijection between sets of closed orbits of X and R.
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Global Hypersurface of Section

Y: closed manifold, X: non-vanishing vector field on Y

A global hypersurface of section (simply GHS) of X is an embedded
submanifold P C Y of codimension 1 with boundary 9P = B such that

@ X is transverse to the interior P
@ X is tangent to the boundary B, i.e. B is X-invariant,
© for each pin Y, there exists t,t_ > 0 such that
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Global Hypersurface of Section

Figure 1: A picture of GHS in dimension 3 1

Intuition: hypersurface where every trajectory crosses

https://www.sciencedirect.com /topics/engineering/poincare-section
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Return Map

P: GHSof X onY

We can define (first) return time 7, for each p € P by
7, = min{t > 0: FI;(p) € P}
and the return map on P
U(p) = FL, (p).

Note. V is a diffeomorphism on P.

Generally, ¥ does not extend to the boundary.
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Open Book Decomposition

Y: Closed manifold, X: Vector field on Y
A codimension 2 submanifold B with 7 : Y \ B — S defines open book
decomposition (OBD) on Y adapted to X if
@ The normal bundle of B is trivial.
@ The map 7 is a fiber bundle such that 7(b;7,0) = € on v(B) \ B.
© X is transverse to each fiber 7~1(#) and tangent to B.
Py = 7-1(#): page, B = OPy: binding
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Open Book Decomposition

Figure 2: lllustration of OBD 2

Q If (B, m) is an OBD of (Y, X), each page P is a candidate for the
GHS. We only need to check the boundedness of the return time.

@ If (B,7) is an OBD of a Reeb vector field of (Y, ker ), then (P, da)
is a symplectic manifold and (B, &g = &|rp) is a contact manifold.

© The return map is a symplectomorphism since ¥*a — o = dr.

2M. Kwon, O. van Koert “Brieskorn manifolds in contact topology”
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Why GHS is useful?

Vector field X on Y"™: Dynamics of 1-parameter family of diffeomorphisms.
Return map ¥ on P"~!: Dynamics of one diffeo/symplecto-morphism.
Ex. Periodic orbit of X < Fixed point or periodic point of W.

Finding periodic Reeb orbit is very important topic in symplectic geometry.
Conjecture (Weinstein Conjecture)

There exists at least one periodic Reeb orbit on compact contact manifold.J

This is also related to finding periodic geodesics.
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Birkhoff's Annulus

. @9

O

Figure 3: Birkhoff's annulus 3

@ There exists at least one periodic geodesic vy on S2.
= We take this orbit as an equator q; = 0.

@ If the curvature is positive, A is a GHS.
A={(g,p) : ¢1 =0, p1 >0} =S x[0,7]

p1 corresponds to the angle between the orbit and ~.

3B. Cipra, D. Mackenzie “What's Happening in the Mathematical Sciences”
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Birkhoff's Annulus

Theorem (Franks)

Any area-preserving homeomorphism of annulus has 0 of infinitely many
fixed points.

= 52 has infinitely many closed geodesics.

Hofer, Wysocki, Zehnder proved that there exists 2 or infinitely many
periodic Reeb orbits on dynamically convex S3, using GHS.

Difficulty in higher dimension: unstability of the boundary (codimension
2 invariant submanifold)

Ex. If Xy is a geodesic vector field, we need totally geodesic submanifold
of codimension 1.
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Mechanical Hamiltonian

Mechanical Hamiltonian



Main Theorem 1

Theorem

Let H : T*R™ — R be a symmetric mechanical Hamiltonian of a convex

type. Then there exists a global hypersurface of section of Hamiltonian
flow on H=1(c) given by

P={(¢,;p)e H (c) : 1 =0, p1 >0}.

Moreover, the return map extends to the boundary.

Mechanical Hamiltonian 19 /54



Symmetric Mechanical Hamiltonian of Convex Type

Mechanical Hamiltonian: H : T*R"™ — R of the form

H(q,p) = W(p) + V(q).

such that p- VW >0 = X = p- 9, is transversal to H !(c)

= X is Liouville and ixw = pdq is a contact form on H~!(c).

Ex. W (p) = |p|?/2: standard definition of mechanical Hamiltonian.
p: R™ — R™ be a reflection along a hyperplane containing 0.

H is symmetric if V(q) = V(p(q)) and W(p) = W (p(p))

—

We assume p is given by p(vi,7) = p(—v1, V)
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Symmetric Mechanical Hamiltonian of Convex Type

Hill’s region : ¢ be a regular value of H. Hill's region is
Hi=pry(H ' (c)) CR"  HE=pry(H '(c)) CR"

If (¢,p) € H'(c), then ¢ € H¢ and p € HE.
Intuitively, H¢ is the maximal region allowed for g-coordinate.

A symmetric mechanical Hamiltonian H is of convex type if
Q 02V >0and 8 W > 0. (q1,p1 are the directions of reflection.)
@ H? and HI are compact.

Mechanical Hamiltonian 21 /54



Binding

Let Y = H~'(c) be a regular level set.
Hamiltonian vector field : Xg = VW -9, — VV - 0,.
Define
B={(¢g,p) € H'(¢) : s = p1 = 0}.
Vg1, @) = V(=a1,@), W(p1,p) = W(-p1,p) (Symmetry condition)
= 04V = 0p,W =0 along B, so X is tangent to B.
= B will be the binding of OBD, or the boundary of GHS.

Mechanical Hamiltonian 22 /54



Fibration and Angular Form

Define fibration 7: Y\ B — S c C by

(g, p) = @ tipr
’ g1 + ip1]
The angular form is defined by
dgy — q1d 0
@:i-dlogW:p1 q; qulz -
a1 qi +pi

Q@ O(Xp) measures angular velocity of Xp.
@ If O(Xpy) > 0, then X is transversal to each page.
Q If ©(Xpg) > e > 0, then the return time is bounded by 27 /¢.

= Closure of every fiber Py = {(¢,p) : Arg(q: +ip1) = 0} is GHS.
In the theorem, we chose 8 =i so ¢ =0, p1 > 0.

Mechanical Hamiltonian 23 /54



Proof of the Existence of GHS

We have
Q(XH) = p18p1W + qlanV.

Near p1 = q1 = 0, take Taylor expansion so that
0(Xu) = iy, W + 4195,V + O(lgi + )
92V >0, 82 W > 0 and the compactness of Hill's region gives
0(Xn) > e(qi +pi)

which gives the lower bound of (X ) near B.

Mechanical Hamiltonian 24 /54



Proof of the Existence of GHS

Outside a neighborhood of B, we have

0y, V
qlalhv:‘ﬁ o
q1

0,V (0,9) =0, 8§1V >0 = 0y, V/q1 > 0 for any g1 # 0.
(04, V = Vi increases along g1, so V3 < 0if ¢ <0and Vi >0if g1 > 0.)

Compactness of Hill's region gives the lower bound of d,, V/q;.

Similarly, we can bound 0y, W/p1, which gives the lower bound of O(X).

Mechanical Hamiltonian 25/54



Extension of Return Map

(H Y(c) =Y, & = kera): Regular level set of contact type
(B, m): Open book decomposition of R on Y’

~: Contractible periodic Reeb orbit contained in B

v: Symplectic normal bundle, i.e. £ @ v = £ along 7.

There exists a Riemannian metric such that

HessH = V(dH|¢) = (%5 59)

where S¢ € {5 ® €5, Sy € v ®@v*. Call S, normal Hessian.

Lemma

If S, is positive definite, the return map on a page can be extended
smoothly to the boundary.

Mechanical Hamiltonian 26 /54



Extension of Return Map

Symplectic normal frame: (9,,,0q, )

Normal Hessian is given by

PW 0
— p1
o (o a;v)

This is positive definite, so the return map extends to the boundary.

Mechanical Hamiltonian
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Example - Mechanical Hamiltonians

Mechanical Hamiltonian is Hamiltonian of the form

H(q,p) = %Ipl2 +V(q)

If the followings hold, we can apply the theorem
Q V(q17® = V(_q17®
Q@ 92V >0.
@ #¢is compact.

Example: Harmonic oscillator

1 k
H(g,p) = §|p|2 + 5|q|2

Mechanical Hamiltonian 28 /54



Example - Ellipsoids

For any Hamiltonians of the form

H(g,p) = aip] + Y _ big;

where a;,b; > 0, we can apply the theorem.

The level set is a contact ellipsoid.

Mechanical Hamiltonian 29 /54



Example - Hénon—Heiles system
Hénon-Heiles system is defined by a Hamiltonian

1 1 1 7
H(q,p) = 5lpI” + V(e) = S Ip* + <§|Q|2 + (g + ¢3)as — é") .

The Hill's region is compact and ¢o > —1/2 if ¢ < 1/6.

/ |

| A\

Figure 4: Contours of the Hénon-Heiles potential where (z,y) = (\/4? + ¢3,q3) *

*https://en.wikipedia.org/wiki/Hénon-Heiles_system
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Example - Hénon—Heiles system
H describes the galactic dynamics, is non-integrable and chaotic.

0.4

Figure 5: Orbit of the Hénon-Helies system 5

Vg1, q2,43) = V(—=q1,42,q3) and 92V =1+ 2g3 > 0, so GHS is

P= {(q,p) GH_I(C) 1 =0,pm ZO}.

°A. Zafar, M. Khan “Energy behavior of Boris algorithm”
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Convex Hypersurfaces

Convex Hypersurfaces



Geodesic Vector Field

Let (M, g) be a complete Riemannian manifold.
Y(q,p) € TM, 3! geodesic v s.t. v(0) = q, ¥(0) = p.
The exponential map

exp: TM —TM
(¢,p) = (v(1),%(1))

defines 1-parameter family of diffeomorphisms ¢;(q,p) = exp,(tp),
which is called geodesic flow.

Geodesic vector field is defined by

d
X4(q,p) = 7 ©i(q,p).
t=0

We define (co-)geodesic flow and (co-)geodesic vector field on T*M by
isomorphism between T'M.

Convex Hypersurfaces 33/54



Geodesic Flow as a Hamiltonian Flow

Proposition

Let M be a Riemannian manifold. The geodesic vector field on T*M is a
Hamiltonian vector field with Hamiltonian

H(q,p) := 1le\g*
2

where T*M is equipped with a canonical symplectic form w = dp A dgq.
Moreover, Xy on H=1(1/2) is identical to the Reeb vector field of the
unit cotangent bundle (ST* M, ker(pdq)).

Convex Hypersurfaces 34 /54



Main Theorem 2

Theorem (Cho, L- '24)

Let M C R™*! be a locally symmetric convex hypersurface with
codimension 1 fixed locus N. Then the geodesic flow on ST*M admits a
global hypersurface of section

P={(x,y) € ST*M : x € N, (y,v) > 0}

where v is the normal vector of N. Moreover, the return map W : PP
extends smoothly to the boundary of P.

This is a generalization of the Birkhoff's annulus.
(Closed geodesic = Totally geodesic submanifold V)

Convex Hypersurfaces 35/54



Locally Symmetric Convex Hypersurface

M = f~Y(c) : regular level set in R**1,
N C M : codimension 1 submanifold of M.

M is locally symmetric with fixed locus N
if there exists a reflection p : R"*1 — R**+1 st
© p|ny =1dy, i.e. N is contained in the hypersurface fixed by p.

@ There exists a tubular neighborhood Uy of N s.t. p(Ux) = Uy.
i.e. pluy is well-defined.

M is convex if M has positive sectional curvature.
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Condition 1 : Symmetry

Lemma

Let (M, g) be a Riemannian manifold and N be a closed submanifold.
Assume that there exist a tubular neighborhood v(N) of N and a locally
defined isometric involution i : v(N) — v(N) such that i(N) = N. Then
N is a totally geodesic submanifold.

First condition (isometric reflection)

= N is totally geodesic submanifold.

= ST*N is tangent to the geodesic vector field
= ST*N is the binding of OBD

Convex Hypersurfaces 37/54



Condition 1 : Symmetry

Let f:R"™! - R and M = f~1(c) is a regular level set.

Note. If M C R""! is an oriented submanifold of codimension 1,
M is always a level set of a function.

For convenience, we assume that
f(z0,Z) = f(—x0, T) for |zo| < &,

i.e. the reflection is given by p(zo, ¥) = (—z0, ).

= {zg =0} N M = N is totally geodesic submanifold of M.

Convex Hypersurfaces 38/54



Condition 2 : Convexity

Lemma

The sectional curvature of regular level set f~'(c) is positive if and only if
Hess(f) is positive definite or negative definite.

Second condition (positive sectional curvature)

< Hess(f) is positive/negative definite.
(If negative definite, we use — f instead.)

Note. M bounds a convex domain, so M ~ S™ and N ~ §»—1,
Normal bundle of codimension 1 closed submanifold of S™ is trivial.

= ST*N has trivial normal bundle in ST*M.

Convex Hypersurfaces 39/54



Explicit Formula for the Hamiltonian Vector Field

Lemma
Let H be a Hamiltonian on w, a~nd V' be a symplectic submanifold given
by f~Y(c1) Ng~Y(ca). Let H = H]|y, then
H H
{9, 1} {f.g}

where {f, g} is a Poisson bracket.

T*M = {(z,y) € T*R™*! : f(z) =¢, (Vf(x),y) = 0}.
= flz,y) = f(z), g(x,y) = (f(2),y), H(z,y) = [y|*/2

Xy =y 0, — 1e5()e(v,0)

Ni@E %
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Angular Form

Let M = f~1(c), Y = ST*M and
B={(z,y) € ST*M : 9 =yo =0} = ST*N.

Define fibration 7: Y\ B — S c C by

o + 1Yo
Tz, y) = — -
|[zo + Yol
The angular form is defined by
dxg — xod 0
@:i‘dlogw:yo xg asg Yo _ s
Lo+ Yo o+ Yo
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Bounding the Angular Form

Put Xpg into 6, we have

B Hess(f)z(y,y) fo(x)
H(XH) - Z/g ZL'% HVf(eT)Hz o

Positive-definiteness of Hess(f) and compactness of Y

= lower bound of Hess(f)(y,y) and foo(z) = Hess(f).((yo,0), (v0,0)).
This gives the positive lower bound of 6(Xp).
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Extension of Return Map

Symplectic normal frame: (9y,, 0x,)

Normal Hessian is given by

g (1 B Ua)
Sy =d g<l’ Wi@E ol )>‘

Positive definiteness of Hess(f) gives the positive definiteness of Sy .

Convex Hypersurfaces
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Topology of GHS

@ M = f~!(c) ~ 8™ M bounds a compact convex domain in R"*!
QY =S8T*M ~ ST*S"

@ N ~ 5" lis an equator of M

Q@ P ~ DT*S" !is a unit upper-hemisphere bundle of S*~!

Q@ B~ ST*S" 1

Convex Hypersurfaces 44 /54



Example - Hypersurface of Revolution

Assume ||.Z]| = [|Z']| = f(xo,Z) = f(z0,Z").
We can apply the theorem if f is symmetric and convex, and get GHS
P ={(0,y0,) : yo > 0}.
Parametrization of M = f~1(c) is
M 0 {(xo,21,0,---,0)} = {(a(¢),acos $,0,---,0) : ¢ € R}

= Explicit computation of the return map.
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Example - Hypersurface of Revolution

Proposition (Cho, L- '24)
The return map ¥ : P — P is given by

¥ ((0,2), (yo, 7)) = ((o,cosG<||g||>f+ o sinG<||g||>g) ,

7l
||y|| L
Yo, ——— sin G([|7]))Z + cos G([|7]])7
where
2m \/ (1 — t2)sin? o + {a’(arcsin (v/1 — t2sin 0))}2
=1 do.
a(l — (1 —1t2)sin® o)
ift #0, and G(0) = 2.

Ellipsoid case : G consists of elliptic integrals
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Example - Kepler Problem
Kepler Hamiltonian on T*R3 \ {0}: E(q,p) = %|p|2 — ﬁ

Figure 6: Kepler orbit 8

The Hamiltonian has a singularity and Hill's region HZ is noncompact.

These problems can be solved by Moser regularization.

Chttps://snl.no/Keplers_problem
75



Moser Regularization

Fix E = Ey. Consider the Hamiltonian on T*R?

K(q.p) = !

2
(d (B(a.p) ~ )+ 17 = 5 50 ~ 2B0)ll)

N | =

2

This is the Hamiltonian of geodesic vector field on T*S? under the
stereographic projection

@, : T*S? — T*R?

rT T —20, Yo,
(l’,y)’%( ) y+_$>
r— X0 T T

where r = y/—2E), composed with a switch map (q,p) — (—p, q).
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Moser Regularization

On T*S3, we have
T4 2
K, = 5’y|

The level set E~1(Ep) can be embedded into K~1(1/2)

= Kepler Hamiltonian vector field and geodesic vector field are parallel.

Xklp-1(5) (P 0) = 14| XE|E-1(E)) (—4: D).

We regard Kepler problem as a sub-system of the geodesic flow on T*53.
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Collision Orbits

The singularity is normalized by adding collision orbits,
which is the orbit bounces back from the origin.

151

05
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Collision Orbits
In T*R3, the (reparametrized) collision orbit is given by

(a(t),p(t) = (0, 0, %(1 + cos(rt)), 0,0, _1’?:—02“(%) '

This is the image of a great circle
~(t) = (= cos(rt), 0,0, — sin(rt); sin(rt) /r, 0,0, — cos(rt) /r)

under the stereographic projection.

t=0: (g3,p3) = (2/r%,0) the highest point

t — 7m/r—: (gq3,p3) = (0, —00) collides into the origin
t — 7/r+ : (q3,p3) = (0,00) bounce back

t =27 : (q3,p3) = (2/r2,0) the highest point

Convex Hypersurfaces 51/54



GHS of Kepler Problem

On ST*S32, we can directly apply the theorem and get GHS
P = {(:U,y) € ST*S® : 23=0, y3 > O}.

On T*R?3, we have

2r?ps P+r: peg
= — = 0 = — > O.
3 22 ) Y3 ) a3 2 p3 =
The GHS is given by P = {(q,p) € T*R?® : g3 >0, p3 = 0}.
P is the set of highest points of the orbits.
Every orbit reaches maximum (ps = 0) on the upper half-plane (g3 > 0).
In particular, the binding OP is planar Kepler problem.

Note. Other choice of Py gives complicated formula.
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Further Discussions

O (Case 1) Finding more examples with physical significance.

@ (Case 2) Extend the result to Finsler geodesic flows.
cf. rotating Kepler problem, restricted 3-body problem

© (Case 2) Extend the result to geodesic flows on d-pinched spaces.
cf. sphere theorem

Q (Case 2) Systolic inequality using the computed return map.
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