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Main Result

Existence of global hypersurfaces of section of

1 symmetric mechanical Hamiltonian defined on T ∗Rn.

2 geodesic flow on symmetric convex hypersurface in Rn+1.
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Basic Notions
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Hamiltonian Dynamics

(W,ω): symplectic manifold, i.e. ω is nondegnerate closed 2-form.

H : W → R: Hamiltonian (which is just a smooth map)

Hamiltonian vector field is given by

iXH
ω = −dH.

The dynamics induced by XH is called Hamiltonian dynamics.

Note. XH is tangent to the regular level set H−1(c).

In other words, H is constant along the orbit of XH

(Conservation of the mechanical energy)
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Example : Mechanical Hamiltonian

Mechanical Hamiltonian (= total mechanical energy) is given by

H : (T ∗Rn, dp ∧ dq) → R

(q, p) 7→ 1

2
|p|2 + V (q)

The Hamiltonian vector field is given by

XH = p · ∂q −∇V · ∂p.

The Hamiltonian flow equation is given by

q̈ = −∇V.

This is Newton’s second law of motion.
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Reeb Dynamics

(Y 2n+1, kerα): Contact manifold (α is 1-form s.t. α ∧ (dα)n ̸= 0)

Reeb vector field R is the unique vector field s.t. α(R) = 1, iRdα = 0.

The dynamics induced by R is called Reeb dynamics.
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Relationship between Hamiltonian and Reeb dynamics

H : W → R: Hamiltonian with regular value c.

Liouville vector field X : LXω = ω and positively transverse to H−1(c).

If there exists a Liouville vector field,

1 (Y = H−1(c), ker(iXω)) is a contact manifold.

2 The Reeb vector field is parallel to XH .

3 Flow of XH and R are same up to reparametrization.

4 Bijection between sets of closed orbits of XH and R.
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Global Hypersurface of Section

Y : closed manifold, X: non-vanishing vector field on Y

A global hypersurface of section (simply GHS) of X is an embedded
submanifold P ⊂ Y of codimension 1 with boundary ∂P = B such that

1 X is transverse to the interior P̊ ,

2 X is tangent to the boundary B, i.e. B is X-invariant,

3 for each p in Y , there exists t+, t− > 0 such that

FlXt+(p), F lX−t−(p) ∈ P.
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Global Hypersurface of Section

Figure 1: A picture of GHS in dimension 3 1

Intuition: hypersurface where every trajectory crosses

1https://www.sciencedirect.com/topics/engineering/poincare-section
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Return Map

P : GHS of X on Y

We can define (first) return time τp for each p ∈ P̊ by

τp = min{t > 0 : FlXt (p) ∈ P}

and the return map on P̊

Ψ(p) = FlXτp(p).

Note. Ψ is a diffeomorphism on P̊ .

Generally, Ψ does not extend to the boundary.
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Open Book Decomposition

Y : Closed manifold, X: Vector field on Y

A codimension 2 submanifold B with π : Y \B → S1 defines open book
decomposition (OBD) on Y adapted to X if

1 The normal bundle of B is trivial.

2 The map π is a fiber bundle such that π(b; r, θ) = eiθ on ν(B) \B.

3 X is transverse to each fiber π−1(θ) and tangent to B.

Pθ = π−1(θ): page, B = ∂Pθ: binding
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Open Book Decomposition

Figure 2: Illustration of OBD 2

1 If (B, π) is an OBD of (Y,X), each page Pθ is a candidate for the
GHS. We only need to check the boundedness of the return time.

2 If (B, π) is an OBD of a Reeb vector field of (Y, kerα), then (P̊ , dα)
is a symplectic manifold and (B, ξB = ξ|TB) is a contact manifold.

3 The return map is a symplectomorphism since Ψ∗α− α = dτ .

2M. Kwon, O. van Koert “Brieskorn manifolds in contact topology”
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Why GHS is useful?

Vector field X on Y n: Dynamics of 1-parameter family of diffeomorphisms.

Return map Ψ on Pn−1: Dynamics of one diffeo/symplecto-morphism.

Ex. Periodic orbit of X ⇔ Fixed point or periodic point of Ψ.

Finding periodic Reeb orbit is very important topic in symplectic geometry.

Conjecture (Weinstein Conjecture)

There exists at least one periodic Reeb orbit on compact contact manifold.

This is also related to finding periodic geodesics.
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Birkhoff’s Annulus

Figure 3: Birkhoff’s annulus 3

1 There exists at least one periodic geodesic γ on S2.
⇒ We take this orbit as an equator q1 = 0.

2 If the curvature is positive, A is a GHS.

A = {(q, p) : q1 = 0, p1 ≥ 0} ≃ S1 × [0, π]

p1 corresponds to the angle between the orbit and γ.
3B. Cipra, D. Mackenzie “What’s Happening in the Mathematical Sciences”
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Birkhoff’s Annulus

Theorem (Franks)

Any area-preserving homeomorphism of annulus has 0 of infinitely many
fixed points.

⇒ S2 has infinitely many closed geodesics.

Hofer, Wysocki, Zehnder proved that there exists 2 or infinitely many
periodic Reeb orbits on dynamically convex S3, using GHS.

Difficulty in higher dimension: unstability of the boundary (codimension
2 invariant submanifold)

Ex. If XH is a geodesic vector field, we need totally geodesic submanifold
of codimension 1.

Basic Notions 17 / 54



Mechanical Hamiltonian
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Main Theorem 1

Theorem

Let H : T ∗Rn → R be a symmetric mechanical Hamiltonian of a convex
type. Then there exists a global hypersurface of section of Hamiltonian
flow on H−1(c) given by

P =
{
(q, p) ∈ H−1(c) : q1 = 0, p1 ≥ 0

}
.

Moreover, the return map extends to the boundary.
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Symmetric Mechanical Hamiltonian of Convex Type

Mechanical Hamiltonian: H : T ∗Rn → R of the form

H(q, p) = W (p) + V (q).

such that p · ∇W > 0 ⇒ X = p · ∂p is transversal to H−1(c)

⇒ X is Liouville and iXω = pdq is a contact form on H−1(c).

Ex. W (p) = |p|2/2: standard definition of mechanical Hamiltonian.

ρ : Rn → Rn be a reflection along a hyperplane containing 0.

H is symmetric if V (q) = V (ρ(q)) and W (p) = W (ρ(p))

We assume ρ is given by ρ(v1, v⃗) = ρ(−v1, v⃗).
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Symmetric Mechanical Hamiltonian of Convex Type

Hill’s region : c be a regular value of H. Hill’s region is

Hq
c = pr1(H

−1(c)) ⊂ Rn Hp
c = pr2(H

−1(c)) ⊂ Rn

If (q, p) ∈ H−1(c), then q ∈ Hq
c and p ∈ Hp

c .

Intuitively, Hq
c is the maximal region allowed for q-coordinate.

A symmetric mechanical Hamiltonian H is of convex type if

1 ∂2
q1V > 0 and ∂2

p1W > 0. (q1, p1 are the directions of reflection.)

2 Hp
c and Hq

c are compact.
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Binding

Let Y = H−1(c) be a regular level set.

Hamiltonian vector field : XH = ∇W · ∂q −∇V · ∂p.

Define
B = {(q, p) ∈ H−1(c) : q1 = p1 = 0}.

V (q1, q⃗) = V (−q1, q⃗), W (p1, p⃗) = W (−p1, p⃗) (Symmetry condition)

⇒ ∂q1V = ∂p1W = 0 along B, so XH is tangent to B.

⇒ B will be the binding of OBD, or the boundary of GHS.
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Fibration and Angular Form

Define fibration π : Y \B → S1 ⊂ C by

π(q, p) =
q1 + ip1
|q1 + ip1|

.

The angular form is defined by

Θ = i · d log π =
p1dq1 − q1dp1

q21 + p21
=

θ

q21 + p21
.

1 Θ(XH) measures angular velocity of XH .

2 If Θ(XH) > 0, then XH is transversal to each page.

3 If Θ(XH) > ε > 0, then the return time is bounded by 2π/ε.

⇒ Closure of every fiber Pθ = {(q, p) : Arg(q1 + ip1) = θ} is GHS.

In the theorem, we chose θ = i so q1 = 0, p1 ≥ 0.
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Proof of the Existence of GHS

We have
θ(XH) = p1∂p1W + q1∂q1V.

Near p1 = q1 = 0, take Taylor expansion so that

θ(XH) = p21∂
2
p1W + q21∂

2
q1V +O(|q21 + p21|)

∂2
q1V > 0, ∂2

p1W > 0 and the compactness of Hill’s region gives

θ(XH) > ε(q21 + p21)

which gives the lower bound of Θ(XH) near B.
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Proof of the Existence of GHS

Outside a neighborhood of B, we have

q1∂q1V = q21
∂q1V

q1
.

∂q1V (0, q⃗) = 0, ∂2
q1V > 0 ⇒ ∂q1V/q1 > 0 for any q1 ̸= 0.

(∂q1V = V1 increases along q1, so V1 < 0 if q1 < 0 and V1 > 0 if q1 > 0.)

Compactness of Hill’s region gives the lower bound of ∂q1V/q1.

Similarly, we can bound ∂p1W/p1, which gives the lower bound of Θ(XH).
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Extension of Return Map

(H−1(c) = Y, ξ = kerα): Regular level set of contact type

(B, π): Open book decomposition of R on Y

γ: Contractible periodic Reeb orbit contained in B

ν: Symplectic normal bundle, i.e. ξB ⊕ ν = ξ along γ.

There exists a Riemannian metric such that

HessH = ∇(dH|ξ) =
(
Sξ 0
0 Sν

)
where Sξ ∈ ξ∗B ⊗ ξ∗B, Sν ∈ ν∗ ⊗ ν∗. Call Sν normal Hessian.

Lemma

If Sν is positive definite, the return map on a page can be extended
smoothly to the boundary.
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Extension of Return Map

Symplectic normal frame: (∂p1 , ∂q1)

Normal Hessian is given by

SN =

(
∂2
p1W 0

0 ∂2
q1V

)
This is positive definite, so the return map extends to the boundary.
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Example - Mechanical Hamiltonians

Mechanical Hamiltonian is Hamiltonian of the form

H(q, p) =
1

2
|p|2 + V (q)

If the followings hold, we can apply the theorem

1 V (q1, q⃗) = V (−q1, q⃗).

2 ∂2
q1V > 0.

3 Hq
c is compact.

Example: Harmonic oscillator

H(q, p) =
1

2
|p|2 + k

2
|q|2
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Example - Ellipsoids

For any Hamiltonians of the form

H(q, p) =
∑

aip
2
i +

∑
biq

2
i

where ai, bi > 0, we can apply the theorem.

The level set is a contact ellipsoid.
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Example - Hénon–Heiles system
Hénon-Heiles system is defined by a Hamiltonian

H(q, p) =
1

2
|p|2 + V (q) =

1

2
|p|2 +

(
1

2
|q|2 + (q21 + q22)q3 −

q33
3

)
.

The Hill’s region is compact and q2 > −1/2 if c < 1/6.

Figure 4: Contours of the Hénon-Heiles potential where (x, y) = (
√
q21 + q22 , q3)

4

4https://en.wikipedia.org/wiki/Hénon-Heiles system
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Example - Hénon–Heiles system
H describes the galactic dynamics, is non-integrable and chaotic.

Figure 5: Orbit of the Hénon-Helies system 5

V (q1, q2, q3) = V (−q1, q2, q3) and ∂2
q1V = 1 + 2q3 > 0, so GHS is

P =
{
(q, p) ∈ H−1(c) : q1 = 0, p1 ≥ 0

}
.

5A. Zafar, M. Khan “Energy behavior of Boris algorithm”
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Convex Hypersurfaces
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Geodesic Vector Field

Let (M, g) be a complete Riemannian manifold.

∀(q, p) ∈ TM , ∃! geodesic γ s.t. γ(0) = q, γ̇(0) = p.

The exponential map

exp : TM → TM

(q, p) 7→ (γ(1), γ̇(1))

defines 1-parameter family of diffeomorphisms φt(q, p) = expq(tp),
which is called geodesic flow.

Geodesic vector field is defined by

Xg(q, p) =
d

dt

∣∣∣∣
t=0

φt(q, p).

We define (co-)geodesic flow and (co-)geodesic vector field on T ∗M by
isomorphism between TM .
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Geodesic Flow as a Hamiltonian Flow

Proposition

Let M be a Riemannian manifold. The geodesic vector field on T ∗M is a
Hamiltonian vector field with Hamiltonian

H(q, p) :=
1

2
||p||2g∗

where T ∗M is equipped with a canonical symplectic form ω = dp ∧ dq.
Moreover, XH on H−1(1/2) is identical to the Reeb vector field of the
unit cotangent bundle (ST ∗M, ker(pdq)).
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Main Theorem 2

Theorem (Cho, L- ’24)

Let M ⊂ Rn+1 be a locally symmetric convex hypersurface with
codimension 1 fixed locus N . Then the geodesic flow on ST ∗M admits a
global hypersurface of section

P = {(x, y) ∈ ST ∗M : x ∈ N, ⟨y, ν⟩ ≥ 0}

where ν is the normal vector of N . Moreover, the return map Ψ : P̊ → P̊
extends smoothly to the boundary of P .

This is a generalization of the Birkhoff’s annulus.

(Closed geodesic ⇒ Totally geodesic submanifold N)
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Locally Symmetric Convex Hypersurface

M = f−1(c) : regular level set in Rn+1.

N ⊂ M : codimension 1 submanifold of M .

M is locally symmetric with fixed locus N
if there exists a reflection ρ : Rn+1 → Rn+1 s.t.

1 ρ|N = IdN , i.e. N is contained in the hypersurface fixed by ρ.

2 There exists a tubular neighborhood UN of N s.t. ρ(UN ) = UN .
i.e. ρ|UN

is well-defined.

M is convex if M has positive sectional curvature.
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Condition 1 : Symmetry

Lemma

Let (M, g) be a Riemannian manifold and N be a closed submanifold.
Assume that there exist a tubular neighborhood ν(N) of N and a locally
defined isometric involution i : ν(N) → ν(N) such that i(N) = N . Then
N is a totally geodesic submanifold.

First condition (isometric reflection)

⇒ N is totally geodesic submanifold.

⇒ ST ∗N is tangent to the geodesic vector field

⇒ ST ∗N is the binding of OBD
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Condition 1 : Symmetry

Let f : Rn+1 → R and M = f−1(c) is a regular level set.

Note. If M ⊂ Rn+1 is an oriented submanifold of codimension 1,
M is always a level set of a function.

For convenience, we assume that

f(x0, x⃗) = f(−x0, x⃗) for |x0| < ε,

i.e. the reflection is given by ρ(x0, x⃗) = (−x0, x⃗).

⇒ {x0 = 0} ∩M = N is totally geodesic submanifold of M .
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Condition 2 : Convexity

Lemma

The sectional curvature of regular level set f−1(c) is positive if and only if
Hess(f) is positive definite or negative definite.

Second condition (positive sectional curvature)

⇔ Hess(f) is positive/negative definite.
(If negative definite, we use −f instead.)

Note. M bounds a convex domain, so M ≃ Sn and N ≃ Sn−1.

Normal bundle of codimension 1 closed submanifold of Sn is trivial.

⇒ ST ∗N has trivial normal bundle in ST ∗M .
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Explicit Formula for the Hamiltonian Vector Field

Lemma

Let H̃ be a Hamiltonian on W , and V be a symplectic submanifold given
by f−1(c1) ∩ g−1(c2). Let H = H̃|V , then

XH = XH̃ − {g, H̃}
{g, f}

Xf − {f, H̃}
{f, g}

Xg.

where {f, g} is a Poisson bracket.

T ∗M = {(x, y) ∈ T ∗Rn+1 : f(x) = c, ⟨∇f(x), y⟩ = 0}.

⇒ f(x, y) = f(x), g(x, y) = ⟨f(x), y⟩, H̃(x, y) = |y|2/2

XH = y · ∂x −
Hess(f)x(y, y)

∥∇f(x)∥2
∇f · ∂y.
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Angular Form

Let M = f−1(c), Y = ST ∗M and

B = {(x, y) ∈ ST ∗M : x0 = y0 = 0} = ST ∗N.

Define fibration π : Y \B → S1 ⊂ C by

π(x, y) =
x0 + iy0
|x0 + iy0|

.

The angular form is defined by

Θ = i · d log π =
y0dx0 − x0dy0

x20 + y20
=

θ

x20 + y20
.
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Bounding the Angular Form

Put XH into θ, we have

θ(XH) = y20 + x20
Hess(f)x(y, y)

∥∇f(x)∥2
f0(x)

x0
.

Positive-definiteness of Hess(f) and compactness of Y

⇒ lower bound of Hess(f)(y, y) and f00(x) = Hess(f)x((y0, 0), (y0, 0)).

This gives the positive lower bound of θ(XH).
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Extension of Return Map

Symplectic normal frame: (∂y0 , ∂x0)

Normal Hessian is given by

SN = diag

(
1,

Hess(f)x(y, y)

||∇f(x)||2
f00(x)

)
.

Positive definiteness of Hess(f) gives the positive definiteness of SN .
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Topology of GHS

1 M = f−1(c) ≃ Sn: M bounds a compact convex domain in Rn+1

2 Y = ST ∗M ≃ ST ∗Sn

3 N ≃ Sn−1 is an equator of M

4 P ≃ DT ∗Sn−1 is a unit upper-hemisphere bundle of Sn−1

5 B ≃ ST ∗Sn−1
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Example - Hypersurface of Revolution

Assume ||x⃗|| = ||x⃗ ′|| ⇒ f(x0, x⃗) = f(x0, x⃗
′).

We can apply the theorem if f is symmetric and convex, and get GHS

P = {(0, x⃗; y0, y⃗) : y0 ≥ 0} .

Parametrization of M = f−1(c) is

M ∩ {(x0, x1, 0, · · · , 0)} = {(a(ϕ), α cosϕ, 0, · · · , 0) : ϕ ∈ R}

⇒ Explicit computation of the return map.
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Example - Hypersurface of Revolution

Proposition (Cho, L- ’24)

The return map Ψ : P → P is given by

Ψ((0, x⃗), (y0, y⃗)) =

((
0, cosG(∥y⃗∥)x⃗+

α

∥y⃗∥
sinG(∥y⃗∥)y⃗

)
,(

y0,−
∥y⃗∥
α

sinG(∥y⃗∥)x⃗+ cosG(∥y⃗∥)y⃗
))

where

G(t) := t

∫ 2π

0

√
α2(1− t2) sin2 σ + {a′(arcsin (

√
1− t2 sinσ))}2

α(1− (1− t2) sin2 σ)
dσ.

if t ̸= 0, and G(0) = 2π.

Ellipsoid case : G consists of elliptic integrals
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Example - Kepler Problem

Kepler Hamiltonian on T ∗R3 \ {0}: E(q, p) = 1
2 |p|

2 − 1
|q|

Figure 6: Kepler orbit 6

The Hamiltonian has a singularity and Hill’s region Hp
c is noncompact.

These problems can be solved by Moser regularization.
6https://snl.no/Keplers problem

Convex Hypersurfaces 47 / 54



Moser Regularization

Fix E = E0. Consider the Hamiltonian on T ∗R3

K̃(q, p) =
1

2
(|q| (E(q, p)− E0) + 1)2 =

1

2

(
1

2
(|p|2 − 2E0)|q|

)2

.

This is the Hamiltonian of geodesic vector field on T ∗S3
r under the

stereographic projection

Φr : T
∗S3

r → T ∗R3

(x, y) 7→
(

rx⃗

r − x0
,
r − x0

r
y⃗ +

y0
r
x⃗

)
where r =

√
−2E0, composed with a switch map (q, p) 7→ (−p, q).
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Moser Regularization

On T ∗
r S

3, we have

Kr =
r4

2
|y|2

The level set E−1(E0) can be embedded into K−1(1/2)

⇒ Kepler Hamiltonian vector field and geodesic vector field are parallel.

XK |E−1(E0)(p, q) = |q|XE |E−1(E0)(−q, p).

We regard Kepler problem as a sub-system of the geodesic flow on T ∗S3.
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Collision Orbits

The singularity is normalized by adding collision orbits,

which is the orbit bounces back from the origin.
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Collision Orbits

In T ∗R3, the (reparametrized) collision orbit is given by

(q(t), p(t)) =

(
0, 0,

1

r2
(1 + cos(rt)), 0, 0,− r sin(rt)

1 + cos(rt)

)
.

This is the image of a great circle

γ(t) = (− cos(rt), 0, 0,− sin(rt); sin(rt)/r, 0, 0,− cos(rt)/r)

under the stereographic projection.

t = 0 : (q3, p3) = (2/r2, 0) the highest point

t → π/r− : (q3, p3) = (0,−∞) collides into the origin

t → π/r+ : (q3, p3) = (0,∞) bounce back

t = 2π : (q3, p3) = (2/r2, 0) the highest point
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GHS of Kepler Problem

On ST ∗S3
r , we can directly apply the theorem and get GHS

P =
{
(x, y) ∈ ST ∗S3 : x3 = 0, y3 ≥ 0

}
.

On T ∗R3, we have

x3 =
2r2p3
p2 + r2

= 0, y3 =
p2 + r2

2r2
q3 −

p · q
r2

p3 ≥ 0.

The GHS is given by P =
{
(q, p) ∈ T ∗R3 : q3 ≥ 0, p3 = 0

}
.

P is the set of highest points of the orbits.

Every orbit reaches maximum (p3 = 0) on the upper half-plane (q3 ≥ 0).

In particular, the binding ∂P is planar Kepler problem.

Note. Other choice of Pθ gives complicated formula.
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Closing
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Further Discussions

1 (Case 1) Finding more examples with physical significance.

2 (Case 2) Extend the result to Finsler geodesic flows.
cf. rotating Kepler problem, restricted 3-body problem

3 (Case 2) Extend the result to geodesic flows on δ-pinched spaces.
cf. sphere theorem

4 (Case 2) Systolic inequality using the computed return map.
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